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Abstract. A steady stream of developments in lattice QCD have made it possible today to begin to address
the question of how nuclear physics emerges from the underlying theory of strong interactions. A central
role in this understanding play both the effective-field theory description of nuclear forces and the ability
to perform accurate non-perturbative calculations in low-energy QCD. Here I present some recent results
that attempt to extract important low-energy constants of the effective-field theory of nuclear forces from

lattice QCD.

PACS. 21.30.-x Nuclear forces — 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons,
etc.) — 12.38.Gc Lattice QCD calculations — 12.38.-t Quantum chromodynamics

1 Introduction

Computing from first principles the properties of hadron
interactions that lead to the formation of atomic nuclei
is a major challenge for lattice QCD. The fact that the
QCD dynamics is at scales of 1 GeV while the nuclear
forces are resulting effects of the order a few MeV creates a
classic two-scale problem. Effective-field theory techniques
are a powerful tool to tackle such problems. The match-
ing though of the effective-field theory to the high-energy
scale theory, namely QCD, requires non-perturbative cal-
culations within QCD. Lattice QCD is the only way to
perform such calculations.

For realistic lattice calculations dynamical fermions
with pion masses below 400 MeV are needed. This allows
chiral effective-field theories to be used with some relia-
bility. In addition, a dynamical strange quark is required
in order to guarantee that the low-energy constants of
the chiral Lagrangian match those of the physical the-
ory. Large physical volumes are also needed so that fi-
nite volume systematic errors are under control. Although
this task seems formidable, in the last several years there
were developments in lattice QCD calculations that per-
mit the performance of phenomenologically interesting
calculations that address these questions.

The emergence of fermions that respect chiral sym-
metry [1-4] on the lattice was one of the major recent
developments in lattice QCD. These formulations of lat-
tice fermions allow us to reduce the lattice spacing errors
and approach the continuum limit in a smoother manner.
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In addition, the development of improved Kogut-Susskind
fermion actions [5,6] that significantly reduce the O(a?)
errors, allowed for cheap inclusion of quark loop effects in
the QCD correlation functions computed on the lattice.
With this formulation we can work at volumes as large as
3.5fm and quark masses as low as 1/10th of the strange-
quark mass.

In the work I present here, we used domain wall
fermions for the wvalence sector and Kogut-Susskind
fermions to represent the quark loops. This mixed action
calculation allows us to both take advantage of the chiral
symmetry properties of domain wall fermions and have
quark loops with masses close to the physical regime. Al-
though one might think that this mixed action scheme
is a complication difficult to control, in practice it has
been shown that the effects of the mismatch between the
sea and the valence sectors are small in the case of flavor
non-singlet quantities. In theory all these complications
can be taken care of in the context of mixed action chiral
perturbation theory [7,8]. Another problem with Kogut-
Susskind fermions is that there is still a theoretical issue
of the validity of computations with number of flavors not
an integer multiple of four. However, recent theoretical
work indicates that the troublesome non-localities of the
lattice action are going away in the continuum limit [9—
12]. Hence these effects are most likely taken care of in the
continuum limit.

Given the available technology for lattice QCD calcula-
tions, there is a variety of physical observables with direct
impact to nuclear physics that can be computed. The nu-
cleon mass spectrum, decay constants and axial couplings
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are now standard lattice calculations that can be done
with very good precision with reliable control of the sys-
tematic errors involved. In addition to these types of calcu-
lations, more recently, lattice QCD calculations of scatter-
ing lengths and phase shifts have began to emerge [13-15]
In the following, I am presenting a few of such calculations
that T have worked on with my collaborators in LHPC and
NPLQCD.

2 Two particles in a box

Although the energy levels of single-particle states can
be easily computed from Euclidean two-point correlation
functions, scattering amplitudes cannot be extracted from
Euclidean four-point functions in infinite volume except
on kinematic thresholds, as stated by the Maiani-Testa
no-go theorem. However, Liischer showed [16,17] that the
s-wave scattering amplitude for two particles below inelas-
tic thresholds can be determined using the measurements
of one or more energy levels of the two-particle system in a
finite volume. In particular, he showed that in the center-
of-mass frame, the s-wave energy levels of two particles of
identical mass m in a finite volume are shifted from those
of two non-interacting particles by an amount that is re-
lated to the scattering amplitude. This energy level shift
is AE, = E, —2m = 2 / p2 + m? — 2m, where p, is
defined by this equation and satisfies

1 P2 L2 11,
p”COté("):ﬁS<:ﬂ2>:E+§rpn+"'a (1)

where d(py,) is the elastic-scattering phase shift, a and r
are the scattering length and effective range, respectively,
L is the length of the spatial dimension in a cubically
symmetric lattice, and

lil<A

S(n)= lim Z UP%U_AMA : (2)
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This definition is equivalent to the analytic continua-
tion of zeta-functions presented by Liischer [18].

3 The lattice calculation

In our computation we use the mixed-action scheme devel-
oped by LHPC [19,20] using domain-wall valence quarks
on Ny = 2+ 1 asqtad-improved [5,6] MILC configura-
tions generated with rooted! staggered sea quarks [21].
For more details on the numerical calculations see [19,
20,15,14]. The essential feature of our calculation is that
the pion masses ranged between 300 MeV and 770 MeV
and that the strange-quark mass was fixed near its phys-
ical mass. The domain wall fermion mass was tuned so

! The “legality” of the rooting procedure has been questioned
and investigated in recent lattice literature. Here, due to space
limitations, I cannot address the issues raised fully.
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Fig. 1. The pion decay constant. Only the lighter three points
are used in the fit. The diamond is the extrapolated value with
its statistical error.

that the domain wall pions matched the Kogut-Susskind
Goldston pion mass. The scattering length is extracted by
computing on the lattice the energy level shift AFEy. In or-
der to do this, the ratio of correlators of the two-particle
state to the product of the single-particle correlators is fit-
ted to a single exponential [15,14]. The decay rate of this
exponential is the energy level shift we need.

3.1 Decay constants

The pseudoscalar decay constants are important param-
eters of the chiral Lagrangian which we would like to
compute from lattice QCD. These constants have been
computed lately to great precision by the MILC Col-
laboration [22,23] using staggered fermions. The domi-
nant error (3%) in these calculations is systematic (due
to scale setting, chiral extrapolations, continuum limit)
rather than statistical. Within all the errors the results
are in remarkable agreement with experiment. We have
repeated these calculations using the mixed action scheme
described above. Our results for the ratio of the kaon to
pion decay constant ratio are presented in detail in [24].
We find that fr/fr = 1.218(2)0 051, where the first er-
ror is statistical and the second is systematic due to the
chiral extrapolation. In addition, by fitting to leading-
order chiral perturbation theory formulas [25] we obtain
fr =133.7(9)(3.0) MeV, where the second error is system-
atic due to the chiral fit. The fit shown in fig. 1 results in
a low-energy constant [2"V* = 4.39(3) compatible with the
experimental expectations and the lower statistics result
obtained in [15]. The lower four solid points plotted in
fig. 1 are high-statistics NPLQCD data while the rest are
LHPC data. One remarkable feature of this plot is the fact
that for pion masses above 400 MeV the data are almost
linear while below there is a clear indication of the chiral
log curvature.

Although in principle one needs to use the effective
theory that takes into account the taste breaking effects in
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Fig. 2. The nucleon axial coupling.

the sea sector [7], in practice it turns out that the regular
continuum chiral perturbation theory formulas fit our data
quite well, leading us to believe that the taste breaking
effects on the decay constant are rather small.

The compatibility of our results with those obtained
by the MILC Collaboration is very encouraging for the
mixed-action scheme we have adopted.

3.2 Nucleon axial coupling

Another low-energy constant useful for the effective-field
theories needed to describe the nuclear forces is the nu-
cleon axial coupling. The ability to reproduce the well-
known experimental result has been a challenge for lat-
tice QCD. Recently though, the use of light pion masses
together with the understanding of the finite-volume cor-
rections [26—28] has led to remarkable improvement in the
lattice results. In fig. 2 the results by LHPC presented
in [27] are shown. Our chiral extrapolation using the finite-
volume formulas of [29] obtain a value of g4 = 1.22(8)
which is in agreement with the experimental result. This
result still has unknown systematic errors due to contin-
uum and chiral extrapolation, but we expect both these
errors to be smaller, or at least comparable to our statis-
tical error.

Recent work by Bernard and Meissner [30], going to
two-loop chiral perturbation theory, indicates that one
may need pion masses below 300 MeV before reliable chiral
extrapolations can be obtained. Certainly, the lattice re-
sults shown here indicate that improving the control of the
chiral extrapolation would definitely benefit from lower
masses. In fact it seems that this is the only way one can
improve the precision on the g4 calculation both from the
point of view of statistical and systematic errors. LHPC
is currently working in pushing closer to the chiral limit.
Using the Kogut-Susskind lattices produced by MILC it
is expected to be able to perform calculations in the range
of 250 MeV pions. In addition, calculations on a smaller
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lattice spacing is in the pipe line in order to control the
continuum extrapolation error.

3.3 Charge symmetry breaking

Recently [31], using partially quenched chiral perturba-
tion theory, we have calculated the proton-neutron mass
splitting due to charge symmetry breaking. Although this
splitting is small one can obtain an accurate estimate in
lattice calculations taking advantage of the statitsitcal cor-
relations between quantities computed on the same en-
semble. The neutron-proton mass difference due to the
up-down quark mass splitting (m,, —my) is related to this
splitting by

_ (1=

M- =B (1) m @
where n = m,/mg and 2@ — 8 is the strong iso-spin
breaking term in the chiral expansion of the proton (neu-
tron) mass. Partially quenched calculations with non-
degenerate up and down quarks, i.e. keeping the sea
quarks degenerate, allow us to compute from lattice cal-

culations the term 2& — f to great precision. Using 7 =
0.43(1)(8) determined by MILC [23] we can obtain

[SUNR)

M, — M| "mPhv® = 2.26(57)(42) MeV  (4)

using the O(mg/ ? partially quenched formulas. This is to
be compared to the experimental value of

M, — M,|’" = 2.05(30) MeV (5)

after correcting for electromagnetic effects [32].

3.4 Pion scattering

The scattering length is the observable that is directly
related to the hadron-hadron interactions. Using Luscher’s
finite-volume technique described above we computed the
pion-pion scattering length in the I = 2 channel. Our
results are plotted in fig. 3 together with the lightest CP-
PACS point [13]. This calculation is the first dynamical
fermion calculation at these light pion masses. The lattice
results are fitted using the one-loop chiral perturbation
formula [25]

2
MyGy =— Mo [1-1—

8mf2

where l.(fr) is the Gasser-Leutwyler low-energy con-
stant which scales as

lLan(i) = lra(fz) + 21og(p/ fz) - (7)

The fitted result at the physical point is

3 2 2
1677:37}2 <10gm—§ +l7r7r(f7r)>:| , (6)

myaz = —0.0422(3)(18), (8)
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resulting fit together with the tree level result and the lightest CP-PACS point (right).
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Fig. 4. The nucleon-nucleon scattering lengths using the opposite-sign convention from the 7-7 case.

where the first error is statistical and the second is an es-
timated systematic error due to chiral extrapolation. This
result is slightly different from the one in [15] due to in-
creased statistics. After scaling to 1GeV using eq. (7),
the low-energy constant I is I (1 GeV) = 2.1(3). In the
above fits only the lightest three points were used. This is
in good agreement with the best experimental result

myas = —0.0454(31). (9)
Mixed-action x-PT [8] has insignificant effect on the final
result. The authors of [8] estimated it to be —0.003. We are
currently extending our studies of meson-meson scattering
to the kaon-pion [33] and kaon-kaon systems.

3.5 Nucleon-nucleon scattering

We also computed the scattering length in the nucleon-
nucleon system where very little lattice work has been
done [34,35]. Our results are plotted in fig. 4. The shaded
areas are the allowed regions that various effective-field

theory approaches predict for these scattering lengths, if
we use the experimental points together with the light-
est lattice point to constrain their parameters [36-41,14].
Clearly, the lightest lattice point is on the boundary of ap-
plicability of these effective-field theories, indicating that
we need significantly lighter pion masses in order to be
able to predict from QCD the physical scattering lengths
in these processes. In addition to lighter pion masses, we
need to study the volume dependence of the energy levels
in order establish the scattering nature of the states we ob-
serve. Certainly, this calculation is far from definitive. It is
an attempt to understand what it takes to perform such
calculations. In the next few years we hope to improve
substantially the quality of our results. Nonetheless, even
at such an early stage, our calculation undoubtedly shows
this very valuable piece of information: in the range of pion
masses used here, the scattering lengths in the nucleon-
nucleon channel are very different from their values at the
physical point.

We are currently working on significantly enhancing
our statistics in order to be able to reduce our error bars
and obtain unambiguous signals for the scattering lengths.



K. Orginos: Lattice QCD and nuclear physics

Also we are investigating techniques to enhance our sig-
nal and alternative lattice formulations that will allow us
to push towards the chiral limit given the computational
resource available to us.

4 Conclusions

In this talk I have presented a number of lattice calcula-
tions that are relevant to nuclear physics. The ultimate
goal is to obtain an understanding of nuclear forces from
QCD. Together with effective-field theory techniques, lat-
tice QCD is valuable tool in this endeavor. It is the
only way to compute from QCD the low-energy con-
stants needed by the low-energy effective-field theories.
Recent theoretical, algorithmic and hardware develop-
ments have made it possible today to perform phenomeno-
logically interesting calculations with direct impact in
our understanding of the nature and phenomenology of
strong interactions. Calculations directly related to the
nucleon-nucleon interactions are just starting indicating
that within the next few years one can expect significant
results in this area.

I would like to thank my collaborators in NPLQCD, and
LHPC. In particular I would like to acknowledge Silas Beane,
Paulo Bedaque, and Martin Savage for their contributions in
every aspect of the calculations done within NPLQCD. All
calculations were done with the QDP++/ Chroma program-
ming environment [42] at the JLab LQCD cluster. This work
was supported in part by DOE contract DE-AC05-84ER40150,
under which SURA operated the Thomas Jefferson National
Accelerator Facility (JLab) and in part by DOE contract DE-
AC05-060R23177 under which Jefferson Science Associates,
LLC, currently operates JLab.
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